brain MRI image brain MRI image

Imaging Phenotypes May Provide
a Novel Biomarker Approach

Phenotypic precision medicine may facilitate decision making based on observable characteristics that are produced through the interaction of a genotype and environment.1-6 Phenotypes can be assessed through noninvasive diagnostics, such as PSMA PET/computed tomography (CT) imaging.3,7-12

In contrast, the analysis of genotypes requires the collection of biologic samples, which can be complicated to do in advanced prostate cancer.13-15

Limitations of prostate cancer biopsies include…

Patient image

associated with
biopsy of primary
and metastatic

Tumor image

Bone biopsies
are technically
challenging to

Cellular image

Not all lesions
are amenable
to biopsy13,15,19,20,23

Patient image

Biopsies of a single tumour may not capture intra- and intertumoural heterogeneity13,15,19,24,25

While genotypes require biologic samples for genetic sequencing, imaging phenotypes can be characterized by noninvasive diagnostics: conventional imaging (CT or bone scan) or next-generation imaging (PET/CT).3,7-12

PET imaging leverages radiotracers to visualize cancer tissue at a high sensitivity and specificity.26-31

Commonly used radiotracers include…

Radiotracer (Date of EMA or FDA Approval,
if Applicable)
Physiologic Target Characteristics
(EMA: 2012;
FDA: 2005)32,33
  • Widely available34
  • Meaningful prognostic indicator in APC35
  • Prostate cancer has low glucose metabolism, resulting in low sensitivity34
(FDA: 2012)36
  • Higher diagnostic sensitivity than FDG-PET/CT37,a
  • Variable sensitivity and specificity for biochemical recurrence, especially at low PSA levels27
  • Short half-life of 20.4 minutes requires an on-site cyclotron27
  • High diagnostic performance for accurate staging and restaging in patients with prostate cancer50,b
  • Long half-life of 109.8 minutes does not require an on-site cyclotron38,51
  • Higher urinary excretion than 11C-choline, which necessitates continuous bladder irrigation to eliminate bladder radioactivity52
  • Approved in 12 countries in Europe38-49
(EMA: 2017;
FDA: 2016)53,54
Amino acid transport53,54
  • Useful for restaging, particularly for patients with higher PSA values55
  • Lesion detection rate superior to choline56,c
  • Potential variability in sensitivity and specificity related to location of metastases27
PSMA-based radiotracers
PSMA-based radiotracers
Targets PSMA
  • High specificity and sensitivity, even at low PSA levels12,27,29,57,d-f
  • May provide better biochemical recurrence detection than 18F-fuciclovine12,d
  • 68Ga-PSMA-11 was approved in the USA in December 2020 as a radioactive diagnostic PET imaging agent in men with prostate cancer with suspected metastasis who are potentially curable by surgery or radiation therapy, or with suspected recurrence based on elevated serum PSA level58
APC, advanced prostate cancer; CT, computed tomography; EMA, European Medicines Agency; 18F-FDG, 18F-fluorodeoxyglucose; FDA, US Food and Drug Administration; PET, positron emission tomography; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen.
aIn a meta-analysis of the diagnostic performance of 11C-choline carried out on 8 selected studies including 276 patients.37
bIn a meta-analysis of the staging/restaging performance of 18F-choline carried out on 16 patient-based and 4 lesion-based studies in 2122 patients and 1039 lesions, respectively.50
cIn a head-to-head comparison performed in 50 patients radically treated for prostate cancer and presenting with rising PSA levels.56
dIn a prospective, single-center, open-label comparative study, 50 adults with biochemical recurrence after radical prostatectomy and PSA levels <2 ng/mL.12
eIn a meta-analysis of the predictive performance of 68Ga-PSMA in 16 studies involving 1309 patients.29
fIn a single-arm prospective trial of 635 patients with biochemically recurrent prostate cancer who underwent 68Ga-PSMA-11 PET.59

PSMA PET imaging is a noninvasive diagnostic approach that may impact treatment decisions in advanced prostate cancer.3-5,7-9

NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

References 1. Aronson SJ, Rehm HL. Nature. 2015;526(7573):336-342. 2. Rowe SP et al. Prostate Cancer Prostatic Dis. 2016;19(3):223-230. 3. Hofman MS et al. Lancet. 2020;395(10231):1208-1216. 4. Müller J et al. Eur J Nucl Med Mol Imaging. 2019;46(4):889-900. 5. Calais J et al. J Nucl Med. 2018;59(3):434-441. 6. National Cancer Institute. Phenotype. Accessed June 7, 2021. /dictionaries/cancer-terms/def /phenotype. 7. Rowe SP et al. J Nucl Med. 2015;56(7):1003-1010. 8. Kratochwil C et al. J Nucl Med. 2016;57(8):1170-1176. 9. Osborne JR et al. J Urol. 2014;191(5):1439-1445. 10. Hofman MS et al. Lancet Oncol. 2018;19(6):825-833. 11. Zang S et al. Oncotarget. 2017;8(7):12247-12258. 12. Calais J et al. Lancet Oncol. 2019;20(9):1286-1294. 13. Ku SY et al. Nat Rev Urol. 2019;16(11):645-654. 14. de Bono J et al. N Engl J Med. 2020;382(22):2091-2102. 15. Friedlander TW et al. Am Soc Clin Oncol Educ Book. 2017;37:358-369. 16. Lukaszewski B et al. Contemp Oncol (Pozn). 2017;21(2):98-103. 17. Forsvall A et al. Scand J Urol. Published online June 7, 2021. doi:10.1080/21681805.2021.1933169. 18. Evans R et al. Open Forum Infect Dis. 2017;4(1):ofw265. 19. Mullane SA, Van Allen EM. Curr Opin Urol. 2016;26(3):231-239. 20. Mateo J et al. Nat Cancer. 2020;1(11):1041-1053. 21. Spritzer CE et al. Radiology. 2013;269(3):816-823. 22. Holmes MG et al. J Vasc Interv Radiol 2017;28(8):1073-1081.e1. 23. Van Allen EM et al. Prostate Cancer Prostatic Dis. 2014;17(1)23-27. 24. Carm KT et al. Sci Rep. 2019;9(1):13579. 25. Haffner MC et al. Nat Rev Urol. 2021;18(2):79-92. 26. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Prostate Cancer V.2.2021. © National Comprehensive Cancer Network, Inc. 2021. All rights reserved. Accessed July 8, 2021. To view the most recent and complete version of the guideline, go online to 27. Crawford ED et al. J Urol. 2019;201(4):682-692. 28. Perera M et al. Eur Urol. 2020;77(4):403-417. 29. Perera M et al. Eur Urol. 2016;70(6):926-937. 30. Afshar-Oromieh A et al. Eur J Nucl Med Mol Imaging. 2015;42(2):197-209. 31. Afshar-Oromieh A et al. Eur J Nucl Med Mol Imaging. 2017;44(8):1258-1268. 32. Fludeoxyglucose (18F) [guideline on core summary of product characteristics]. London, UK: Committee for Medicinal Products for Human Use; 2012. 33. Fludeoxyglucose F18 injection [prescribing information]. Manhasset, NY: The Feinstein Institute for Medical Research; 2010. 34. Wallitt KL et al. Radiographics. 2017;37(5):1512-1536. 35. Jadvar H et al. J Nucl Med. 2013;54(8):1195-1201. 36. Choline C11 injection [prescribing information]. Rochester, MN: Mayo Clinic; 2012. 37. Evangelista L et al. Clin Transl Imaging. 2013;1(2):99-109. 38. AAACholine [Information destinée aux professionnels - Suisse]. Genève, Suisse: Advanced Accelerator Applications Switzerland SA; 2016. 39. CHOLSCAN [Resume des caracteristiques du produit - Belgique]. Saint-Genis-Pouilly, France: Advanced Accelerator Applications; 2017. 40. CHOLSCAN [Ficha técnica o resumen de las características del product - España]. Esplugues de Llobregat, España: Advanced Accelerator Applications Ibérica; 2017. 41. CHOLSCAN [Riassunto delle caratteristiche del prodotto - Italia]. Saint Genis Pouilly, Francia: Advanced Accelerator Applications; 2017. 42. CHOLSCAN [Preparato charakteristikų santrauka - Lietuva]. Saint Genis Pouilly, Prancūzija: Advanced Accelerator Applications; 2017. 43. CHOLSCAN [Samenvatting van de productkenmerken - Nederland]. Saint Genis Pouilly, Frankrijk: Advanced Accelerator Applications SA (AAA); 2017. 44. Cholview [Resumo das características do medicamento, rotulagem e folheto informative - Portugal]. Saint Genis Pouilly, França: Advanced Accelerator Applications SA (AAA); 2018. 45. FLUROCHOL [Zusammenfassung der merkmale des arzneimittels - Österreich]. Saint Genis Pouilly, Frankreich: Advanced Accelerator Applications; 2017. 46. FLUROCHOL [Zusammenfassung der merkmale des arzneimittels - Deutschland]. Saint-Genis-Pouilly, Frankreich: Advanced Accelerator Applications; 2017. 47. FLUROCHOL [Resume des caracteristiques du produit - France]. Saint Genis Pouilly, France: Advanced Accelerator Applications; 2015. 48. FLUROCHOL [Resume des caracteristiques du produit - Luxembourg]. Saint Genis Pouilly, France: Advanced Accelerator Applications; 2017. 49. FLUROCHOL [Charakterystyka produktu leczniczego – Polska]. Saint Genis Pouilly, Francja: Advanced Accelerator Applications; 2016. 50. Lin CY et al. Clin Nucl Med. 2019;44(5):365-376. 51. DeGrado TR et al. J Nucl Med. 2001;42(12):1805-1814. 52. Hara T et l. J Nucl Med. 2002;43(2):187-199. 53. Axumin [summary of product characteristics]. Dublin, Ireland: Blue Earth Diagnostics Ireland Ltd; 2017. 54. Axumin [prescribing information]. Burlington, MA: Blue Earth Diagnostics; 2016. 55. Savir-Baruch B et al. AJR Am J Roentgenol. 2019;213(4):851-858. 56. Nanni C et al. Clin Nucl Med. 2015;40(8):e386-e391. 57. Fendler WP et al. JAMA Oncol. 2019;5(6):856-863. 58. FDA Approves First PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer. U.S. Food & Drug Administration [press release]. December 1, 2020. Accessed June 28, 2021. 59. Fendler WP et al. J Nucl Med. 2020;61(12):1793-1799.